Bonsoir,
On note: t=tan(a/2) , F(x)=(Pi-2a)/(4tan(pi/4-a/2)).
On doit montrer que f(x)=F(x).
Et on rappelle que:
cos(a)=(1-t²)/(1+t²) , tan(a)=2t/(1-t²)
On a:
f(x)=(racine(x²+1)+x).Arctan(racine(x²+1)-x)
<==>f(x)=Arctan(racine(x²+1)-x)/(racine(x²+1)-x)
<==>f(x)=Arctan(racine(tan(a)²+1)-tan(a))/(racine(tan(a)²+1)-tan(a))
<==>f(x)=Arctan((1/cos(a))-tan(a))/((1/cos(a))-tan(a))
<==>f(x)=[Arctan((1-t)²/(1-t²))]/[((1-t)²/(1-t²))]
Or:
F(x)=(Pi-2a)/(4tan(pi/4-a/2))
<==>F(x)=(Pi/4-a/2)/(tan(Pi/4)-a/2)
<==>F(x)=[(Pi/4-a/2)]/[(1-t)/(1+t)]
Donc:
f(x)=F(x)
<==>[Arctan((1-t)²/(1-t²))]/[((1-t)²/(1-t²))]=[(Pi/4-a/2)]/[(1-t)/(1+t)]
<==>[Arctan((1-t)²/(1-t²))]=[(Pi/4-a/2)]
<==>(1-t)²/(1-t²)=tan(Pi/4-a/2)
<==>(1-t)²/(1-t²)=(1-t)/(1+t)
Ce qui est vrai...
Ainsi:
f(x)=F(x)
C.Q.F.D.