Forum des amateurs de maths
Vous souhaitez réagir à ce message ? Créez un compte en quelques clics ou connectez-vous pour continuer.


Aide pour les futurs mathématiciens
 
AccueilAccueil  PortailPortail  RechercherRechercher  Dernières imagesDernières images  S'enregistrerS'enregistrer  Connexion  
Le Deal du moment :
Code promo Nike : -25% dès 50€ ...
Voir le deal

 

 Préparations aux olympiades de tronc commun (2010-2011)

Aller en bas 
+46
Norax
Mehdi-el
redouaneamraouza
Misterayyoub
diablo902
*youness*
Loliiiita
kaj mima
ilyasaitazzi
l'intellectuelle
az360
konica
darkpseudo
Mehdi.O
maths_lady
mathadores
amigo-6
K-maths
youpi
alumenne.b
achraf_djy
boubou math
yumi
M.Marjani
Nayssi
Meded
louis
yasserito
master
Othmaann
houssa
ayoubmath
nmo
Dijkschneier
mizmaz
belkhayaty
Azerty1995
tarask
Hamouda
anas-az_137
matheux-xman
Ahmed Taha (bis)
maths-au-feminin
A446
supista
ali-mes
50 participants
Aller à la page : Précédent  1, 2, 3, 4, 5, 6 ... 14 ... 23  Suivant
AuteurMessage
Ahmed Taha (bis)
Expert grade2



Masculin Nombre de messages : 353
Age : 29
Localisation : kénitra
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyDim 19 Déc 2010, 20:18

salut
pour le problème 26
on a 2a+3>=2sqrt(6a)
et 2b+3>=2sqrt(6b)
et 2c+3>=2sqrt(6c)
donc (2a+3)(2b+3)(2c+3)>=48sqrt(6abc)
288>=48sqrt(6abc)
6^2>=6abc
abc=<6
Revenir en haut Aller en bas
Ahmed Taha (bis)
Expert grade2



Masculin Nombre de messages : 353
Age : 29
Localisation : kénitra
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyDim 19 Déc 2010, 20:27

voici mon problème
problème 27:
factoriser A et B:
A=x^8+x+1
B=x^10+x^5+1
Revenir en haut Aller en bas
maths-au-feminin
Maître



Féminin Nombre de messages : 70
Age : 29
Date d'inscription : 07/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 10:39

slt ... pour l'exo de abdelkrim-amine je ne l'ai po encore résolu (mais je vais espérons)
en tous cas voila un nouveau exo POUR NE PAS RETARDER NOTRE FABULEUX JEU (phrase typique n'est ce pas ?? Very Happy )
problème 28:
trouve une polynôme f(x) tel que Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 10:56

SALAM
Moi aussi j'a pas trouvé la réponse pour le problème abdelkrim-amine
et pour l'exercice de maths-au-feminin il est simple {mini-EF Very Happy }
voilà ma méthode:
on a f(x) est une polynôme et Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif donc Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif alors f(x) s'écrit sous la forme Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
d'où Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
donc
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.latex?\left\{\begin{matrix}%204a=1%20&%20&%20\\%204a+2b=\frac{1}{2}&%20&%20\\%20a+b+c=3&%20&%20\end{matrix}\right
d'où Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.latex?\left\{\begin{matrix}%20a=\frac{1}{4}%20&%20&%20\\%20b=-\frac{1}{4}&%20&%20\\%20c=3&%20&%20\end{matrix}\right

conclusion: Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Revenir en haut Aller en bas
ayoubmath
Maître
ayoubmath


Masculin Nombre de messages : 216
Age : 31
Date d'inscription : 07/03/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:07


pose ton problème ali-mes
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:14

avec plaisir
je vais proposer ces deux exos:

Problème 29:
trouves toutes les polynômes P(x) tel que (x-16)P(2x)=16(x-1)P(x) Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif

Problème 30: (problème déjà proposé dans le forum mais pas encore résolu)
la somme de quatre nombres est 270 .
لو اضفنا 4 الى الاول و طرحنا 4 من التاني و ضعفنا التالت و اخدنا نصف الرابع لحصلنا على اربعة اعداد متساوية
اوجد الاعداد الاربعة
Revenir en haut Aller en bas
maths-au-feminin
Maître



Féminin Nombre de messages : 70
Age : 29
Date d'inscription : 07/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:16

ali-mes a écrit:
SALAM
Moi aussi j'a pas trouvé la réponse pour le problème abdelkrim-amine
et pour l'exercice de maths-au-feminin il est simple {mini-EF Very Happy }
voilà ma méthode:
on a f(x) est une polynôme et Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif donc Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif alors f(x) s'écrit sous la forme Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
d'où Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
donc
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.latex?\left\{\begin{matrix}%204a=1%20&%20&%20\\%204a+2b=\frac{1}{2}&%20&%20\\%20a+b+c=3&%20&%20\end{matrix}\right
d'où Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.latex?\left\{\begin{matrix}%20a=\frac{1}{4}%20&%20&%20\\%20b=-\frac{1}{4}&%20&%20\\%20c=3&%20&%20\end{matrix}\right

conclusion: Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif


méthode excellente et bien organisée

c koi EF ?????????
Question Question Question
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:18

EF = équation fonctionnelle = une équation dont les inconnues sont des fonctions
Revenir en haut Aller en bas
houssa
Expert sup



Masculin Nombre de messages : 1693
Age : 68
Date d'inscription : 17/11/2008

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:43

salam pour pb 28

une petite remarque: il suffit d'écrire x = 2y+1 , avec y = (x-1)/2

f(x) = f [2(x-1)/2 +1] =[(x-1)/2]² + 1/2.[(x-1)/2] + 3

= (x-1)²/4 + (x-1)/4 +3

= x²/4 - x/4 +3

______________________________________________________________
Revenir en haut Aller en bas
maths-au-feminin
Maître



Féminin Nombre de messages : 70
Age : 29
Date d'inscription : 07/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:48

ma réponse pour problème 30
soient x et y et z et t ces nombres
on a (E): x+y+z+t=270
et x+4=y-4=2z=t/2

y-4=x+4 donc y=x+8
2z=x+4 donc z=(x+4)/2
t/2 =x+4 donc t=2x+8
en remplaçant dans E on trouve
que x=56
d'autre part on a (E'):y+z+t=214
2z=y-4 donc z=(y-4)/2
t/2=y-4 donc t=2y-8
en remplaçant dans E' on trouve
y=64
d'autre part on a (E"):z+t=150
et on a 2z=t/2 donc t=4z
d'où z=30
z+t=150 donc t=120
S={x=56/y=64/z=30/t=120} sans aucune faute de ma part

Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:51

maths-au-feminin a écrit:
ma réponse pour problème 30
soient x et y et z et t ces nombres
on a (E): x+y+z+t=270
et x+4=y-4=2z=t/2

y-4=x+4 donc y=x+8
2z=x+4 donc z=(x+4)/2
t/2 =x+4 donc t=2x+8
en remplaçant dans E on trouve
que x=56
d'autre part on a (E'):y+z+t=214
2z=y-4 donc z=(y-4)/2
t/2=y-4 donc t=2y-8
en remplaçant dans E' on trouve
y=64
d'autre part on a (E"):z+t=150
et on a 2z=t/2 donc t=4z
d'où z=30
z+t=150 donc t=120
S={x=56/y=64/z=30/t=120} sans aucune faute de ma part





JUSTE et pour problème 29 ???


Dernière édition par ali-mes le Lun 20 Déc 2010, 11:53, édité 1 fois
Revenir en haut Aller en bas
ayoubmath
Maître
ayoubmath


Masculin Nombre de messages : 216
Age : 31
Date d'inscription : 07/03/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:51

pour problème 30
il suffit de résoudre la système suivant :
* a+b+c+d=270
* a+4=b-4=2c=d/2


Dernière édition par ayoubmath le Lun 20 Déc 2010, 12:15, édité 1 fois
Revenir en haut Aller en bas
maths-au-feminin
Maître



Féminin Nombre de messages : 70
Age : 29
Date d'inscription : 07/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 11:54

ali-mes a écrit:
maths-au-feminin a écrit:
ma réponse pour problème 30
soient x et y et z et t ces nombres
on a (E): x+y+z+t=270
et x+4=y-4=2z=t/2

y-4=x+4 donc y=x+8
2z=x+4 donc z=(x+4)/2
t/2 =x+4 donc t=2x+8
en remplaçant dans E on trouve
que x=56
d'autre part on a (E'):y+z+t=214
2z=y-4 donc z=(y-4)/2
t/2=y-4 donc t=2y-8
en remplaçant dans E' on trouve
y=64
d'autre part on a (E"):z+t=150
et on a 2z=t/2 donc t=4z
d'où z=30
z+t=150 donc t=120
S={x=56/y=64/z=30/t=120} sans aucune faute de ma part





JUSTE et pour problème 29 ???


pas encore Very Happy Very Happy
Revenir en haut Aller en bas
ayoubmath
Maître
ayoubmath


Masculin Nombre de messages : 216
Age : 31
Date d'inscription : 07/03/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:14

pour pro 29
est ce que la degré de P(x) na pas donné
Revenir en haut Aller en bas
matheux-xman
Féru
matheux-xman


Masculin Nombre de messages : 34
Age : 28
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:21

Problème 29 :
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.download?(x-16)p(2x)=16(x-1)p(x)\Rightarrow&space;\left\{\begin{matrix}&space;p(2)=0\\&space;p(16)=0&space;\end{matrix}\right
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
q(x) vérifie : Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
donc : q(4)=0 et q( 8 )=0
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif P(x)=a(x-2)(x-4)( x - 8 )(x-16)
Revenir en haut Aller en bas
matheux-xman
Féru
matheux-xman


Masculin Nombre de messages : 34
Age : 28
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:25

ayoubmath a écrit:
pour pro 29
est ce que la degré de P(x) na pas donné
on peut vérifier que le degré de P(x) est 4 puisque :
si deg(P)=n alors n vérifie 2^n = 16 donc n = 4
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:25

matheux-xman a écrit:
Problème 29 :
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif.download?(x-16)p(2x)=16(x-1)p(x)\Rightarrow&space;\left\{\begin{matrix}&space;p(2)=0\\&space;p(16)=0&space;\end{matrix}\right
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
q(x) vérifie : Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
donc : q(4)=0 et q( 8 )=0
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif P(x)=a(x-2)(x-4)( x - 8 )(x-16)


juste c a twa de poster un nouveau problème
Revenir en haut Aller en bas
matheux-xman
Féru
matheux-xman


Masculin Nombre de messages : 34
Age : 28
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:30

Je pense qu'il y a encore un problème non résolu, c'est celui de "abdelkrim-amine"
à savoir :
problème 27:
factoriser A et B:
A=x^8+x+1
B=x^10+x^5+1
Revenir en haut Aller en bas
ayoubmath
Maître
ayoubmath


Masculin Nombre de messages : 216
Age : 31
Date d'inscription : 07/03/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:43

remarque : si qls xER x^8+x+1#0

on ne peux pas factoriser A (je crois)
Revenir en haut Aller en bas
maths-au-feminin
Maître



Féminin Nombre de messages : 70
Age : 29
Date d'inscription : 07/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:45

voilà un exo délicieux à résoudre de géométrie


PROBLÈME 31:
soit ABCD un parallélogramme. considérons les points A' B' C' et D' tel que A' مماثلة A par rapport à B et B' مماثلة par rapport à C et C' مماثلة C par rapport à D et D' مماثلة par rapport à A.
quelle est la nature du quadrilatère A'B'C'D' ?
Revenir en haut Aller en bas
matheux-xman
Féru
matheux-xman


Masculin Nombre de messages : 34
Age : 28
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:46

ayoubmath a écrit:
remarque : si qls xER x^8+x+1#0

on ne peux pas factoriser A
Non, ce n'est pas vrai, on peux montrer que tout polynome dans IR peut être factroriser sous forme de produit des polynome de 1er et 2eme degré.
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:48

matheux-xman tu peux nou présenter ta méthode pour l'exo de factorisation
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:52

maths-au-feminin a écrit:
voilà un exo délicieux à résoudre de géométrie


PROBLÈME 31:
soit ABCD un parallélogramme. considérons les points A' B' C' et D' tel que A' مماثلة A par rapport à B et B' مماثلة par rapport à C et C' مماثلة C par rapport à D et D' مماثلة par rapport à A.
quelle est la nature du quadrilatère A'B'C'D' ?


Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif
Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Gif un parallélogramme.
CQFD
Revenir en haut Aller en bas
matheux-xman
Féru
matheux-xman


Masculin Nombre de messages : 34
Age : 28
Date d'inscription : 06/12/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:54

maths-au-feminin a écrit:
voilà un exo délicieux à résoudre de géométrie


PROBLÈME 31:
soit ABCD un parallélogramme. considérons les points A' B' C' et D' tel que A' مماثلة A par rapport à B et B' مماثلة par rapport à C et C' مماثلة C par rapport à D et D' مماثلة par rapport à A.
quelle est la nature du quadrilatère A'B'C'D' ?
On vérifie que les deux triangles AD'A' et C'CB' متقيساًن donc A'D'=C'B'
idem on montre que C'D' = A'B'
donc A'B'C'D' est un parallélogramme
Revenir en haut Aller en bas
ali-mes
Expert sup



Masculin Nombre de messages : 986
Age : 28
Localisation : Tétouan
Date d'inscription : 01/10/2010

Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 EmptyLun 20 Déc 2010, 12:56

en attente que matheux-xman poste son factorisation Very Happy


Dernière édition par ali-mes le Lun 20 Déc 2010, 17:28, édité 1 fois
Revenir en haut Aller en bas
Contenu sponsorisé





Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty
MessageSujet: Re: Préparations aux olympiades de tronc commun (2010-2011)   Préparations aux olympiades de tronc commun (2010-2011) - Page 6 Empty

Revenir en haut Aller en bas
 
Préparations aux olympiades de tronc commun (2010-2011)
Revenir en haut 
Page 5 sur 23Aller à la page : Précédent  1, 2, 3, 4, 5, 6 ... 14 ... 23  Suivant
 Sujets similaires
-
» Préparations aux olympiades de tronc commun (2009-2010)
» Préparations aux olympiades de tronc commun (2011-2012 )
» Olympiades Tronc commun !
» Préparations aux olympiades du première (2011-2012)
» ptite inégalité type olympiades tronc commun.

Permission de ce forum:Vous ne pouvez pas répondre aux sujets dans ce forum
Forum des amateurs de maths :: Lycée :: Seconde - Tronc commun-
Sauter vers: